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Abstract 

This report provides a specification of the RT_STAP benchmark for evaluating the 

application of scalable high performance computers to the real-time implementation of space- 

time adaptive processing (STAP) techniques on embedded platforms. STAP is an adaptive 

processing technique used to support clutter and interference cancellation in airborne radars. 

The RT_STAP benchmark is an example of a compact application benchmark that uses a 

real-time design-to-specification methodology. The scalability study outlined in the 

RT_STAP benchmark varies the sophistication and computational complexity of the adaptive 

algorithms to be implemented. The benchmark provides hard, medium, and easy benchmark 

cases based upon three post-Doppler adaptive processing algorithms: higher-order Doppler- 

factored STAP, first-order Doppler-factored STAP, and post-Doppler adaptive Displaced 

Phase Center Antenna (DPCA). 
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Section 1 

Introduction 

A benchmarking methodology for assessing the use of scalable high performance 

computing (HPC) in real-time embedded applications has been proposed (Games, 1996). 

This methodology assesses both the ability of an HPC architecture to implement existing 

processing requirements under strict size, weight, and power constraints, along with the 

scalability of the architecture to meet future processing needs. It adopts a "design-to- 

specification" approach that utilizes both functional and timing specifications. Using this 

benchmarking approach, competing architectures can be evaluated by determining the 

smallest sized scalable architecture that meets the required timing and functional 

specifications. The minimum sized solutions can be compared using common measures of 

cost, size, weight, and power. In practice, benchmarks are applied at various levels including 

low-level benchmarks that focus on key elements of the HPC system, intermediate-level 

benchmarks involving computation and communication kernels, and high-level compact 

applications consisting of a few thousand lines of code. This report applies the methodology 

to a series of compact applications associated with the use of advanced signal processing 

techniques in airborne moving target indication (MTI) radar systems. 

In particular, this report provides a specification of the RT_STAP benchmark. This 

benchmark is concerned with the implementation of space-time adaptive processing (STAP) 

techniques used to support clutter and interference cancellation in airborne radars. STAP 

algorithms combine both spatial and temporal adaptive processing to cancel Doppler-spread 

clutter and interference contained in radar signals measured by an airborne antenna array. 

These algorithms have the potential to significantly improve the functional performance of 

the radar system while requiring little or no modification to the basic radar design (e.g., 

increase in array size or modification of the signal waveform). These techniques are of 

particular interest given that future upgrades to a number of existing surveillance platforms 

may incorporate some form of STAP. 



The computational complexity of more advanced STAP algorithms will easily 

overwhelm the computational capabilities of processors used on current airborne platforms. 

Consequently, as platforms incorporate STAP algorithms into their radar signal processing, 

processor upgrades will be required. In addition to supporting the computational needs of 

current processing techniques, these upgrades must scale to the requirements of future 

processing methods in a manner that meets the strict size, weight, and power limitations 

associated with an airborne platform. Our goal is to provide a benchmarking methodology 

that could be used to evaluate HPC architectures intended to support future STAP upgrades. 

The potential for STAP algorithm upgrades is reflected in the scalability study of the 

RT_STAP benchmark. Typically the scalability of a parallel architecture has been evaluated 

by varying the size of the data processing problem (i.e., varying the amount of data to be 

processed) for a given algorithm and architecture. However, in developing the RT_STAP 

benchmark, an alternative approach was considered. In this case, scalability is evaluated by 

varying the algorithm complexity for a given processing problem. Separate benchmark cases 

for signal processing techniques of varying sophistication are developed. These benchmark 

cases provide varying levels of functional performance at the cost of increased computational 

throughput requirements. The proposed RT_STAP benchmark evaluates the ability of a 

parallel processing architecture to scale as a function of algorithm complexity. 

The scalability study for the RT_STAP benchmark involves three levels of complexity: 

easy, medium, and hard. The easy benchmark case corresponds to the post-Doppler adaptive 

Displaced Phase Center Antenna (DPCA) algorithm and requires a computational throughput 

of 0.60 billion floating-point operations1 per second (Gflop/s). This case represents 

technology used in current radar systems for performing a similar function to STAP. It can 

be implemented on a variety of high performance computers with little difficulty. The 

medium benchmark case corresponds to first-order Doppler-factored STAP and requires 

6.46 Gflop/s. The hard benchmark case corresponds to an implementation of third-order 

Doppler-factored STAP and requires a throughput of 39.81 Gflop/s. 

1    A floating-point operation is defined to be the addition, subtraction, or multiplication of 
two real numbers in floating-point representation. 



The RT_STAP benchmark includes the implementation of the data preprocessing 

typically performed before the application of STAP algorithms. Preprocessing typically 

includes: conversion of the received radar signals from video to in-phase and quadrature 

(I/Q) samples at baseband, array calibration, and pulse compression. In the past, 

preprocessing has been implemented using special-purpose hardware. However, we view 

this processing as a potential application of HPC technology, particularly when specialized 

processing nodes are allowed. Implementing the preprocessing functions within the HPC 

communication fabric should significantly reduce the number of interfaces, thus simplifying 

the system. 

In this report, we use the Multi-Channel Airborne Radar Measurement (MCARM) system 

as an example for determining the throughput requirements of both the preprocessing and the 

STAP algorithms. The MCARM data collection system was developed for Rome Laboratory 

by the Westinghouse Electronic Systems Group (now Northrup Grumman, Electronic 

Sensors and Systems Division, Baltimore, Maryland) for the purpose of collecting and 

recording L-band radar returns transmitted from an airborne platform. The data measured by 

the MCARM data collection system can be used to evaluate the ability of STAP techniques 

to cancel Doppler-spread clutter and interference. Rome Laboratory has collected a number 

of useful data sets and has made them available for processing. We use a selected data set to 

provide the input for sequential software that implements RT_STAP. 

The algorithms chosen for the benchmark cases in RT_STAP were selected to provide a 

means for evaluating the performance of current and future HPC architectures and to support 

the development, demonstration, and evaluation of our benchmarking methodology. We do 

not endorse the use of a particular STAP algorithm in any particular system. Furthermore, 

this particular set of benchmarks is not meant to suggest a particular migration path for any 

airborne radar platform. While algorithm performance was and will continue to be a 

consideration in selecting the algorithms to be benchmarked, we make no judgments 

concerning the relative functional performance of these techniques beyond those drawn from 

the existing literature and referenced in the text. 



A real-time benchmark specification (Games, 1996) consists of a functional specification, 

a timing specification, a scalability study, sequential code that implements the functional 

specification, and implementation guidelines. Section 2 describes the functional 

specification of the preprocessing common to all adaptive processing techniques considered. 

Section 3 describes the functional specification of the post-Doppler adaptive algorithms. 

Section 4 describes the real-time period and latency requirements of the RT_STAP 

benchmark along with the scalability study. The period determines the computational 

throughput required and follows easily from the sensor front end, in this case from the 

duration of the coherent processing interval (CPI) of the MCARM system. The strictness of 

the latency requirement determines the difficulty of the parallel implementation. This 

requirement is often system specific, and so to cover the two extremes we specify two latency 

cases: short (in terms of a number of CPIs) and unlimited. The scalability study described in 

Section 4 calculates the throughput requirement of the easy, medium, and hard cases using 

the MCARM system parameters. 

Section 5 describes the sequential implementation of the preprocessing and STAP 

algorithms that is provided with the RT_STAP benchmark. Section 6 gives the 

implementation guidelines and reporting requirements for the RT_STAP benchmark. Section 

7 summarizes and concludes the report. 

Before concluding this section, a few words on notation are in order. Throughout the 

document we use lower case letters to denote scalar variables and indices (e.g., x(i) and i). 

Upper case letters are used to denote the upper and/or lower bounds of an index (e.g., 

n = 0,...,N). Column vectors are denoted by lower case letters overscored by a right- 

pointing arrow (e.g., x), while matrices are represented by upper case letters also overscored 

by a right-pointing arrow (e.g., X). To denote that the variable x is a function of the index i 

we use the notation x(i). This same notation is used to index vectors and matrices. 

A number of operators are used throughout the report. The superscript "T" denotes the 

transpose operator while "H" is used to denote Hermitian transpose. The superscript "*" 

denotes the complex conjugate operator. We make use of two functions denoted by |_-J and 



f •]. The first function corresponds to the largest integer smaller than or equal to the contents 

of the operator, while the second function corresponds to the smallest integer larger than or 
equal to the contents of the operator. 

5/6 



Section 2 

Preprocessing Functional Specification 

Before applying space-time adaptive processing algorithms to data samples measured by 

an airborne antenna array, a significant amount of preprocessing must be performed. The 

type of preprocessing varies between systems; however, there are generally three major 

functions: (1) video-to-I/Q conversion, (2) array calibration, and (3) pulse compression. 

Figure 2-1 shows a block diagram of the STAP preprocessing. These functions are applied to 

the A/D data samples independently across the L channels. Complex data samples are 

passed between each component of the preprocessing with the data at the output of the pulse 

compression functional block forming the input to the STAP. 

To support the STAP algorithm, a data cube (Figure 2-2) corresponding to the L 

channels, P pulse repetition intervals (PRIs), and TV time samples per PRI, must be 

processed. This data cube corresponds to a single CPI of the radar system. On input, these 

data samples will be real-valued integers. We define x{l,p,n) to be a real data sample 

corresponding to the n-th time sample from the p-th PRI of the /-th channel of the CPI. The 

following subsections describe the functionality of the preprocessing that is to be performed 

on this data cube. Each subsection specifies the component functionality to be implemented 

and provides estimates of the computational complexity for processing a single CPI. For all 

operations described in the subsequent sections, the data samples from each channel and each 

PRI are processed independently. 

Real Integer 
A/D Data 
Samples 

Video-to-I/Q 
Conversion 

Array 
Calibration 

Pulse 
Compression 

Complex Data 
Samples To 
STAP Algorithm 

Figure 2-1. Preprocessing Block Diagram for a Single-Array Channel 
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L-1 

Channel 

0 

0 

PRI 

P-1 

Input 
Data Cube 

Time  N-1 

Figure 2-2. Input Data Cube for a Single CPI 

2.1 Video-to-I/Q Conversion 

For many array processing systems, digital receivers are used to demodulate the signal to 

baseband and generate digital samples using a sampling rate at or slightly above the Nyquist 

rate. In some cases, digital data is generated at an intermediate frequency (IF) and sampled at 

a higher rate than required to accurately represent the baseband signal. The Rome 

Laboratory MCARM system, for example, provides IF data to the preprocessor. For these 

systems, the digital data must be demodulated to baseband, lowpass filtered, and decimated 

to a lower sample rate. These processes are implemented in the video-to-I/Q conversion 

functional block. 

Demodulation to baseband is achieved by multiplying the data by demodulation 

coefficients (i.e., complex sinusoid) that translate the signal to baseband. The frequency 

translated samples are then processed by a lowpass filter to remove aliased frequency 

components. Sample rate conversion decimates the data by simply choosing the samples 

corresponding to the desired sample rate. For complex data, this sample rate must be at least 



as large as the bandwidth of the signal. Typically, the data is slightly over-sampled to allow 

for array calibration; but in general, over-sampling is minimized to limit the data rate. The 

complex data generated at the output of the video-to-I/Q functional block forms the input to 
the calibration process. 

If we let /IF denote the center frequency of real data samples, /A_D be the sampling 
frequency of the data, and hd(p,n) be the complex demodulation coefficients, then the 

output after frequency translation is: 

x0(l,p,n) = hd(p,n)x(l,p,n), (2-1) 

where n = 0,...,JV-l, p = 0,...,P-l, / = 0,...,L-1, and hd(p,n) is given by: 

hi{p,n)=2exp{-j27cfw(n + pN)/fA_D}. (2-2) 

Implementation of the demodulation to baseband function requires 2 • N floating-point 
operations per channel and PRI, resulting in a total of L ■ P • (2 • JV) floating-point operations. 

Anti-aliasing is then accomplished with a finite impulse response (FIR) lowpass filter. 
The length of the filter is defined to be Ka and the real-valued filter coefficients are denoted 
by ha (k) for k = 0,..., Ka -1. The output of the filter corresponds to the discrete linear 

convolution of the real filter coefficients with the complex data: 

AT.-l 

*i ('. P.«) = 2 K {K) *o (f. P,n~K)> (2-3) 
*.=o 

for n = 0,...,N-l, p = 0,...,P-l,and l = 0,...,L-l. When implementing this filter we 
assume that x0(l,p,n) = 0 for n < 0. In general, we will design the FIR filter to have linear 

phase. In this case, the filter coefficients must satisfy the condition: 

Kin) = K(K-\-n). (2-4) 



We can take advantage of this property to reduce the computational complexity of 

implementing equation (2-3). Note that the FIR filter coefficients are normalized such that 

the inner product hf \ equals unity. 

After applying the lowpass filter, the sample rate conversion function decimates the data 

to achieve the desired data rate. We assume the data is to be decimated by an integer value, 

D, defined to be the ratio of the sampling rate of the data on input to the preprocessor and the 

desired sampling rate after conversion. The final output of the conversion process is: 

x2(l,p,nD) = xl(l,p,nD-D), (2-5) 

where nD = 0,...,ND-l, p = 0,...,P-l, / = 0,...,L-1, and ND = INID\. 

In an attempt to minimize computational complexity, we considered two methods for 

implementing the lowpass filter: discrete linear convolution and fast convolution based on 

the fast Fourier transform (FFT). Due to the decimation that takes place as part of this 

process, we found that discrete linear convolution provides the most efficient implementation 

for this application. Note from equation (2-5) that only one of every D output samples of 

equation (2-3) needs to be explicitly computed. As a result, it is most efficient to compute 

equation (2-3) explicitly for the subset of data samples that form the output of the data rate 

conversion process. By taking advantage of the lowpass filter's linear phase property 

described in (2-4), we can reduce the number of floating-point operations required to 

implement the filter. Using this result, the FIR filtering and decimation function requires 
3-Ka-ND floating-point operations per channel and PRI, resulting in a total of 

L-P-(3-Ka-ND) floating-point operations. Note that the number of operations reflects real- 

valued filter coefficients. 

2.2 Array Calibration 

Array calibration is essential to performing the spatial-temporal filtering associated with 

STAP. For example, to maintain high antenna gain in the direction of the desired signal, 

constraints are applied to the adaptive weights. The constraints help prevent the adaptive 
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processing from nulling signals located in the mainbeam of the antenna. To define these 

constraints the antenna response must be known. In general, however, variations in the 

response of the antenna elements, receivers, and other components of the array over time 

introduce unknown amplitude and phase variations in the data. For wideband signals, these 

variations are often a function of frequency and change across the passband of the receivers. 

These frequency-dependent variations can also affect the ability of a STAP algorithm to 

adequately null undesired interference. As a result, successful application of most STAP 

algorithms requires that the antenna response be measured and equalized across all channels. 

Calibration can be achieved by applying an FIR filter to the data with filter coefficients 

designed to equalize the antenna response. Filter coefficients are typically determined off- 

line from measurements of the antenna response to known signals. The process associated 

with defining equalization filter coefficients is not typically part of the preprocessing. The 

coefficients associated with these filters vary across antenna elements; however, we assume 
the filter length, Kc, is constant across the array. We assume that the filter coefficients are 

precomputed and do not need to be determined as part of the preprocessing. If we denote the 
filter coefficients by hc(l,k), then the output of the array calibration process can be written 

as: 

Kc-1 

*3 (*>/>> "D )= S Hc (l'k^ *2 (''P' "D ~ kc )' ^2"6') 
*c=0 

where nD =0,...,ND -1, p = 0,...,P-l, and l = 0,...,L-l. We assume that x2(l,p,n) = 0 

for n < 0. The most efficient implementation for (2-6) is to use either overlap-save or 

overlap-add fast convolution techniques. Additional savings can be obtained by combining 

the implementation of the calibration process with pulse compression. We discuss the 

combined implementation of these two processes in Section 2.4. 

2.3 Pulse Compression 

By employing pulse compression techniques, radar systems can transmit relatively long 

pulses with low peak power to achieve high signal energy and improved detection 

11 



performance. By also employing a properly designed phase or frequency modulated signal, 

these systems can obtain resolution comparable to that achieved by systems that employ 

shorter pulses (Chapter 15, Eaves and Reedy, 1987, pp. 420-424; Skolnik, 1980). Pulse 

compression is implemented by passing the received data through an FIR filter with 

coefficients matched to the signal waveform. After being passed through this "matched 

filter," the pulse will have a duration equivalent to the inverse of the transmitted signal 

bandwidth. To reduce range sidelobes and improve range resolution, a taper is often applied 

to the coefficients of the matched filter. The complex data samples generated at the output of 
the pulse compression filter form the input to the STAP. If we let hp(k), k = 0,...,Kp-l, 

denote the Kp FIR filter coefficients used in pulse compression, then the output samples after 

pulse compression can be written as: 

K„-l 
X4 {l> P> nD ) =  X K (kp ) X3 (l> P> "D - *p ). (2"7) 

*P=0 

where nD = 0,...,iVD-l, p = 0,...,P-l, l = 0,...,L-l, and x3(l,p,n) = 0 for n<0. After 

pulse compression is complete, the variable nD corresponds to the range index. 

In general, the filter coefficients are matched to the transmitted signal with a taper applied 

to reduced range sidelobes. The coefficients can be written in the form: 

hp(k) = sp(k)w(k), (2-8) 

where sp(k) represents the k-th matched signal sample and w(k) corresponds to the k-th 

weight of the taper. The choice of signal waveform and taper is heavily dependent upon the 

application. Note that the filter coefficients are normalized such that the inner product hp hp 

equals unity. In Appendix A we give an example of typical real-valued filter coefficients for 

Rome Laboratory's MC ARM platform. As with the calibration process, the most effective 

implementation of pulse compression uses one of two well-known fast convolution 

techniques. As we noted in the previous section, it is most efficient to combine 

implementation of the calibration and pulse compression processes. The combined 

implementation of these functions is described in the next section. 

12 



2.4  Implementation of Calibration and Pulse Compression 

The combined implementation of calibration and pulse compression requires computation 

of the following expression: 

x4(hP,nD) = x2(l,p,nD)*hc(l,nD)*hp(nD) = x2(l,p,nD)*hcp(l,nD), (2-9) 

where "*" denotes discrete linear convolution over the index «D. We assume that the 

convolution of the filter coefficients is performed off-line to produce a combined filter 
response of hcp(l,k), corresponding to a sequence of length Kcp = Kc + Kp -1. The 

combined coefficients can be computed using: 

M''"D)= Lhc(l>K)\(nD-K)> (2-io) 
*c=o 

for nD = 0,...,Kcp -1 and / = 0,...,L-1. Note that hc(l,k) = 0 for k < 0 or k > Kc and 

hp(k) = 0 for k < 0 or k > Kp. The output of the preprocessing corresponds to the discrete 

linear convolution of the combined filter coefficients and the set of length AfD sequences of 

data samples, x2(l,p,nD), for p = 0,...,P-l and Z = 0,...,L-1. 

Fast convolution techniques based upon either the overlap-add or overlap-save methods 
represent the most efficient implementation of the linear convolution x2(l,p,nD) * hcp(l,nD) 

over the index nD. Since the choice of fast convolution algorithm might be system 

dependent, we leave it for the developer to select the most appropriate method. Detailed 

descriptions of these techniques are available in the literature (Oppenheim and Schäfer, 1975, 

pp. 110-115). In order to discuss design tradeoffs associated with the implementation and to 

estimate computational complexity, the subsequent discussion provides an implementation of 

the combined filtering process using the overlap-save method. 

The overlap-save method implements a discrete circular convolution of segments of the 

complex data and the filter coefficients, followed by a selection of the part of the circular 

convolution corresponding to the linear convolution of the two sequences. To begin, we 

13 



augment the complex data x2(l,p,nD) with Kcp -1 leading zeros. The augmented data 

sequence is then divided into B overlapping segments of length R + Kcp-l, where R and B 

are related through the expression B = IND I Ii\ and R is the length of the discrete linear 

convolution. Each segment is overlapped by Kcp -1 samples. Each data block is circularly 

convolved with the sequence of filter coefficients, hcp(l,nD), using FFT techniques. FFTs are 

applied to both the data block and the sequence of filter coefficients with both sequences zero 

padded so that the length of the FFT is a power of two. Transformation of the filter response 

can be performed off-line. 

R is selected to minimize computation count. To minimize zero padding and improve 

the efficiency of the processing, R is selected so that R + Kcp -1 is a power of two. The 

length of the FFT, R, is then set to R + Kcp -1. As a result of this choice of R, only the last 

data block will need to be zero padded. Zero padding is avoided completely when ND/R is 

an integer. It is also desirable to make R as large as possible to improve the efficiency of the 

implementation. These two design goals are not always compatible and tradeoffs must be 

made depending upon the number of samples per PRI. 

Once the FFTs are computed, the transformed sequences are multiplied and an inverse 

FFT is applied to the result to obtain the time-domain representation of the circular 
convolution. The first Kcp -1 samples are discarded and the remaining samples from the B 

data segments are assembled to form the final output of the preprocessing. 

Implementation of the FFTs and inverse FFTs used to compute the convolution requires 

5 • R ■ log2R floating-point operations per FFT or inverse FFT (Oppenheim and Schäfer, 

1975, p. 305). Multiplication of the sequences in the frequency domain requires 6 • R 

floating-point operations per data block. The total operation count for calibration and pulse 
compression processing of the entire data cube is LPB-(lOR- log2R + 6-R), where 

R = Kc+Kp + R- 2 and B = [" JVD / R~\. The number of data blocks, B, and the length of the 

FFT, R, are selected to minimize the computational complexity of the implementation, and 

their values vary as a function of the number of time samples per PRI. 
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2.5 Summary 

In this section, functional specifications were presented for the three components of the 

preprocessing: video-to-I/Q conversion, array calibration, and pulse compression. We also 

evaluated the computational requirements of the preprocessing. During this analysis, we 

observed that computational complexity can be minimized by combining the implementation 

of array calibration and pulse compression using fast convolution techniques. Table 2-1 

below summarizes the results of our analysis. 

Table 2-1. Preprocessing Computation Counts 

Function Operation Count 

Video-to-I/Q Conversion L-P-{2-N + 3-Ka-ND) 

Calibration and Pulse Compression LPB(lORlog2R + 6R); 

R = Kc + Kp + R-2; B = \ND/R\ 

Below we have defined the parameters used in the expressions for the preprocessing 

computation counts: 

L 

P 

N 

D 

ND 

Ka 

*P 

R: 

Number of channels 

Number of PRIs per CPI 

Number of samples per PRI before decimation 

Decimation factor 

Number of samples per PRI after decimation; ND = [TV/ D\ 

FIR filter length used for anti-aliasing in video-to-I/Q conversion 

FIR filter length used in array calibration 

FIR filter length used in pulse compression 

FFT size (power of 2) used by the overlap-save fast convolution method 
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R:      Discrete linear convolution length in array calibration and pulse compression 

B:       Number of blocks in the overlap-save fast convolution method; Z? = |iVD / /H. 
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Section 3 

Post-Doppler Adaptive Processing Functional Specifications 

Modern airborne radar systems must have the capability to detect targets having relatively 

small cross-sections in the presence of strong clutter and interference. Due to the motion of 

the radar platform, the clutter returns will have a non-zero Doppler shift that is dependent 

upon the location of the clutter source with respect to the radar's receiving antenna array. 

Consequently, clutter arriving in the antenna sidelobes may have an extensive Doppler spread 

that encompasses the Doppler frequency of a target signal to be detected. The sidelobe 

clutter cannot be removed using conventional processing techniques that apply temporal 

filtering to suppress clutter returns arriving around zero Doppler frequency. While 

conventional beamformers can provide spatial filtering to limit the impact of interference and 

clutter arriving in the sidelobes of the antenna, it becomes difficult and expensive to develop 

fixed beamformers having sidelobe levels low enough to suppress strong sidelobe clutter. 

Space-time adaptive processing algorithms have been developed to directly address 

cancellation of Doppler-spread clutter (Brennan and Reed, 1973). 

Space-time adaptive processing techniques take advantage of both the spatial and 

Doppler diversity of target signal returns, clutter, and interference to extract the desired 

signal. These techniques adaptively combine samples from multiple channels and pulses 

(i.e., PRIs) to null clutter returns and interference. Processing data from multiple channels 

provides the radar an opportunity to control the spatial response of the system while 

processing multiple pulses enables the processing to separate signals based upon their 

Doppler frequency. Figure 3-1 shows the configuration for fully-adaptive STAP. Each array 

channel is followed by a tapped delay line filter that processes samples from multiple pulses 

received by the array. The outputs of the tapped delays are adaptively weighted and 

combined across all channels to form the residual output. The adaptive weights are selected 

based upon the received data allowing STAP to adjust its spatial-temporal response to adapt 

to changes in the signal environment. 
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Figure 3-1. Fully-Adaptive STAP 

For most airborne radar applications, implementation of a fully-adaptive STAP algorithm 

is not feasible due to the computational complexity of the weight computation process and 

the amount of data required to train the adaptive weights. As a result, sub-optimal, partially- 

adaptive techniques are used to implement the adaptive processing. A detailed taxonomy of 

partially-adaptive STAP algorithms having varying computational complexity and 

performance is provided in (Ward, 1994). The four classes of STAP algorithms are 

distinguished by the type of processing applied before adaptive processing. The four classes 

are: element-space pre-Doppler, element-space post-Doppler, beam-space pre-Doppler, and 

beam-space post-Doppler. 

In this report, we focus on three element-space post-Doppler adaptive techniques that 

provide increasingly more effective clutter mitigation at the cost of higher processing 

throughput requirements. These algorithms are: post-Doppler adaptive DPCA, first-order 

Doppler-factored STAP, and higher-order Doppler-factored STAP. The algorithms compute 

a set of adaptive weights using a data domain approach that involves a matrix factorization 
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called the QR-decomposition (Golub and Van Loan, 1989, p. 211). The computational 

complexity of competing approaches is governed by the size of the QR-decomposition and 

the number of decompositions required. 

In selecting an algorithm for the hard benchmark case, we considered two possible 

approaches: PRI-staggered post-Doppler STAP (Ward, 1994) and higher-order Doppler- 

factored STAP (DiPietro, 1992). Both algorithms were implemented in sequential C code 

and evaluated using MCARM data. We found that the eigenvalue spreads of the space-time 

covariance matrices used by the PRI-staggered approach were often very large due to the 

high correlation between noise samples of adjacent staggers, resulting in near-rank deficient 

covariance matrices. Consequently, we encountered substantial variations in the range- 

Doppler power values when the output of the double and single-precision implementations of 

this algorithm were compared. The conditioning problem could be reduced by using a 

strided stagger to decrease the noise correlation between adjacent staggers. Similar noise 

correlation effects were encountered using higher-order Doppler-factored processing 

techniques, however, the conditioning problem was significantly less than in the PRI- 

staggered case. Consequently, the RT_STAP benchmark provides a specification for third- 

order Doppler-factored STAP algorithm as the hard case. The architecture of a first-order 

Doppler-factored STAP algorithm is obviously derived from the more general higher-order 

approach. It provides a downward scaling in complexity while providing effective clutter 

and interference cancellation. The RT_STAP benchmark provides a specification for this 

algorithm as the medium case. 

The post-Doppler adaptive DPCA algorithm forms the basis for our easy RT_STAP 

benchmark case. This algorithm was one of the first techniques developed to address the 

issue of Doppler-spread clutter in airborne radar. It can be shown that its architecture can 

also be derived from the more general PRI-staggered post-Doppler STAP algorithm. Both 

the performance and complexity of the post-Doppler adaptive DPCA algorithm are less than 

those of the first-order and third-order Doppler-factored algorithms. Due to its limited 

processing throughput requirements, the DPCA algorithm provides a practical solution to the 

clutter mitigation problem encountered in some airborne MTI applications. As a result, it has 

been applied in current radar systems. 
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The remainder of this section specifies the three benchmark cases. Section 3.1 first 

provides a functional specification for Doppler processing that forms a key component of all 

three post-Doppler adaptive algorithms. Section 3.2 specifies the higher-order Doppler- 

factored STAP algorithm and the general techniques used to compute the adaptive weights. 

Sections 3.3 and 3.4 specify the third- and first-order Doppler-factored STAP algorithms that 

correspond to the hard and medium benchmark cases, respectively. Finally, Section 3.5 

specifies the post-Doppler adaptive DPCA algorithm that corresponds to the easy benchmark 

case. 

3.1 Doppler Processing 

The first component of all three post-Doppler adaptive algorithms is Doppler processing. It 

is implemented by applying a discrete Fourier transform of length K across P pulses of the 

preprocessed data for a given range cell and channel, where K represents the number of 
Doppler cells to be processed. A precomputed window function is applied to the data to reduce 

spectral leakage. The K complex data samples after Doppler processing can be written as: 

x5(l,k,r) = J,d(p)x4(l,p,r)e^,^k, (3-1) 
p=0 

for r = 0,...,ND-l, k = 0,...,K-l, and l = 0,...,L-l. In the above expression, the quantity 

d(-) represents the real-valued window function applied to the data samples, where d d 

equals unity. 

In practice, the discrete Fourier transform is implemented using an FFT. The data 

samples are zero padded, if necessary, so that the length of the FFT, denoted by K, is a 
power of two. A window function having length P is applied to the data before the 
transformation is performed. Application of the real-valued window function across all 
pulses of a given range cell and channel requires 2 • P floating-point operations. Application 
of the FFT requires 5 • K ■ \og2K operations. It is left to the implementor to select an 
appropriate FFT algorithm. Therefore, a total of 5 • K ■ \o%2K + 2-P operations is needed to 

implement Doppler processing for a given range cell and channel. The number of required 
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Doppler processing functional blocks depends on the number of range cells, channels, and 
type of adaptive processing algorithm. In general, the total number of computations required 
to implement Doppler processing is L-ND-(5-K- \og2K + 2 • P). 

3.2 Higher-Order Doppler-Factored STAP 

The higher-order Doppler-factored STAP algorithm can be one of the most effective 
STAP techniques known for clutter and interference suppression. Figure 3-2 shows the 
higher-order Doppler-factored STAP architecture of order Q. The architecture is composed 

of Doppler processing across all PRIs followed by adaptive filtering across sensors and 
adjacent Doppler bins. Adaptive filtering of the data uses simultaneous spatial and temporal 
degrees of freedom (DOF) in each specified Doppler bin. The spatial DOF are provided by 
the L array channels, while the temporal DOF are provided by the Q adjacent Doppler bins 

centered about the specified Doppler bin. 
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The adaptive weights for a particular range cell r and Doppier bin k are computed from 
the second-order statistics of the space-time snapshot vector x(k, r) consisting of data 

samples across the L array channels and the Q adjacent Doppler bins k^n through kmm that 

are centered about Doppler bin k. For ß-th order Doppler-factored STAP, we define k^n to 

be modK(k-[(Q-l)/2J) and kmax tobe mod^(Ä: + [(ß-l)/2]), where mod^Q is the 
A. 

modulo operator (e.g., modJf(-l) = ÄT-l and modK(K) = 0). The Lxl space-time 

snapshot vector is defined to be: 

x(k,r) = [x5(0,k^,r)---x5(L-l,k^n,r)---x5(0^x,r)---x5(L-l,k^,r)] ,     (3-2) 

where L = LQ andx5(/,fc,r) represents the data sample corresponding to the Doppler 

processing output for the r-th range cell, k-th Doppler bin, and /-th channel. Alternative bin 

selections are possible but are not relevant to this benchmarking effort. Given this definition 

of x(k, r), the Lxl column vector of space-time adaptive weights w(k, r) is defined as 

^,r) = [^0,^n,r).--w(L-l,^n,r)---^0,^max,r)---vv(L-l,A:max,r)]T,    (3-3) 

where w(l,k,r) represents the adaptive weight to be applied to the data sample corresponding 

to the r-th range cell, k-th Doppler bin, and /-th channel. The output of the adaptive 

processing for the k-th Doppler bin and r-th range cell is: 

x6(k,r) = wH(k,r)x(k,r). (3-4) 

The outputs x6 (k, r) for r = 0,..., ND -1 and k = 0,...,K-l result in the range-Doppler map 

following adaptive processing. Detection algorithms can then be applied to the result to 

locate targets in range and Doppler. 

If we define the space-time covariance matrix to be: 

V(k,r) = E{x(k,r)xH(k,r)}, (3-5) 
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where E{} is the expectation operator, then the adaptive weights are obtained by solving the 

following system of linear equations (see pp. 326-330, Compton, 1988): 

V(k,r)w(k,r) = ys, (3-6) 

where 7 is a scale factor chosen such that wH(k,r) s equals unity. The Lx 1 column 

vector s corresponds to the target space-time steering vector defined to be: 

s =[s(0,0) - s(L-l,0) - s(0,Q-l) - s(L-l,Q-l)f, (3-7) 

where 

s{l,q) = s{l)g(q + modK(-[{Q -1)/2_|)), (3-8) 

q = 0,...,Q-l, / = 0,...,L-1, s(l) corresponds to the target spatial steering vector at the 

l-th channel, 

gto^dWe"2*'»*, (3-9) 

and d(-) represents the real-valued Doppler window. Note that the space-time steering vector 

is normalized such that sHs equals unity. 

From equation (3-6) we see that the higher-order Doppler-factored STAP algorithm 

clearly depends upon knowledge of the space-time covariance matrix. For most practical 

applications, this matrix is unknown and must be estimated from the data samples. In 

general, an estimate of the covariance matrix is computed by averaging over snapshot 

vectors from adjacent range cells. The precise training strategy for selecting the snapshot 

vectors that provides the optimal tradeoff of processing performance and computational 

complexity is, to some extent, an open question in the STAP community. 
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In this report, the training strategy involves dividing the range cells into M non- 
overlapping blocks containing NR contiguous range samples, where M = ND/NR and where 
JVR is selected so that the ratio is an integer. The covariance matrix for the fc-th Doppler bin 

and m-th block of contiguous range cells is computed by averaging over the outer product of 

the snapshot vectors. That is: 

n+NR-\ 
±{k,m) = —   ]T    x{k,r)xH{k,r), (3-10) 

■^R     r=rx 

where ¥(fc,m) is the estimate of the covariance matrix, rx = mNR, m = 0,...,M-1, and 

k = 0,...,K-l. The estimate is used in place of the covariance matrix in equation (3-6) to 
compute the adaptive weight vector that is applied to all the data snapshots comprising the 

m-th block of range cells for the k-th Doppler bin. 

If the LxNR space-time data matrix, X(k,m), is defined to be: 

X(k,m) = [x(k,mNR) ■■■ x(k,(m + l)NR -l)], (3-11) 

then 

±(k,m) = — X{k,m)XH(k,m). (3-12) 

In practice, X(k,m) has full row rank equal to L because of background system noise. 

Equation (3-6) then becomes: 

X{k,m)XH(k,m)w{k,m) = yNRs, (3-13) 

where w(k,m) corresponds to the weight vector applicable to all range cells in the m-th 

block and is computed using the data matrix X(k,m). The scale factor y is chosen such that 

wH(k,m)s equals unity. 
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The number of range samples used to estimate the covariance matrix should be at least 

twice the number of DOF (i.e., L). Some authors suggest using between three to five times 

the number of DOF to minimize the loss in output signal-to-noise ratio that can occur when 

an estimate of the space-time covariance matrix is used. Note that the training strategy 

described above relies upon the knowledge of accurate spatial steering vectors to prevent 

significant target signal cancellation. More sophisticated training strategies exist that can 

alleviate the accuracy constraint; however, the application of these strategies can increase the 

computational complexity of the STAP algorithm by an order of magnitude. 

3.2.1 Weights Computation 

The weight vector is computed by first performing a QR-decomposition on the full 

column-rank space-time data matrix XT(k,m) defined in equation (3-11). Note that the 

transpose XT(k,m) is used to conform with the least-squares convention of having an over- 

determined system with more rows (NR) than columns (L). The QR-decomposition 

produces an NR x JVR unitary matrix, Q, and an NRxL upper triangular matrix, R, such that 

XT(k,m) = QR. The matrix R can be written as \RJ    Öl , where Ri is a L x L full rank 

upper triangular matrix. The matrix product X(k,m)Xu(k,m) decomposes to: 

X(k,m)XH(k,m) = RT QT Q* R" = R? R*, (3-14) 

where QTQ* = [QHQ) = I- Since the matrix Q is not involved in the weight computation, it 

is not necessary to explicitly compute this matrix during the QR-decomposition process. A 

variety of methods exist for computing the QR-decomposition (Golub and Van Loan, 1989, 

pp. 211-220). We leave it to the developer to select an algorithm that provides the most 

efficient implementation for the target hardware architecture. If the modified Gram-Schmidt 

method is used (Golub and Van Loan, 1989, pp. 218-219), then 8 • JVR • [L • Q]2 floating-point 

operations are required to implement a single QR-decomposition corresponding to the m -th 

block of range cells for the k -th Doppler bin. A total of K ■ M ■ (8 • NR • [L • Qf j floating- 

point operations are required to implement all the QR-decompositions involved in the 
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application of gth-order Doppler-factored STAP in each Doppler bin and each block of 

range cells in the data cube. 

Following the QR-decomposition, forward elimination and backward substitution are 

performed to solve for the adaptive weights. The weight vector can be computed by first 

solving for the vector p in the expression: 

R?P=NRs (3-15) 

using forward elimination. The weight vector is determined by solving the expression: 

Rlr = p (3-16) 

using backward substitution. Algorithms for implementing both forward elimination and 

backward substitution are given in (Golub and Van Loan, 1989, pp. 87-88). The final weight 
IT 

vector w(k,m) is equivalent to yr, where y is selected so that w(k,m) s = 1. As a result, 

7 = (rH?)~\ 

Forward elimination and back substitution each require 4 • [L • Q]   floating-point 

operations to implement. Clearly, implementation of the QR-decomposition dominates the 

computational complexity of the STAP weight computation process. Adaptive weights must 

be computed in each Doppler bin and each block of range cells. Consequently, the total 

number of computations required to solve for the adaptive weights for the entire data cube is 

KM(S-[L-Q]
2
). 

3.2.2 Weights Application 

If we let w(k,m) represent the adaptive weight vector to be applied to data corresponding 

to the k -th Doppler bin and the m -th block of range cells, then the NR outputs of the STAP 

algorithm are given by the product of the data matrix and the weight vector: 

wM{k,m)X{k,m). (3-17) 
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This process requires 8LQNK floating-point operations to implement, and it must be 

repeated in each Doppler bin and each block of range cells in the data cube. The total 

number of floating-point operations required to apply the adaptive weights to the data cube is 
K-M-(S-L-Q-NR). 

3.3 Hard Benchmark Case: Third-Order Doppler-Factored STAP 

The third-order Doppler-factored STAP algorithm can be one of the most effective STAP 

techniques known for clutter and interference suppression (DiPietro, 1992). This algorithm 

can provide a performance comparable to the fully-adaptive case while significantly reducing 

the computational complexity of the processing. 

For the third-order Doppler-factored STAP processor, the space-time snapshot vector is 

formed using data from three adjacent Doppler bins centered around bin k. Computation 

counts for the hard benchmark case can be determined using the equations given in Section 

3.2 with the number of sensors, L, set to 22 and the processing order, Q, set to 3. 

3.4 Medium Benchmark Case: First-Order Doppler-Factored STAP 

The first-order Doppler-factored STAP algorithm is one of the simplest post-Doppler 

STAP techniques known for clutter and interference suppression. In fact, since the technique 

does not adapt in the time domain (i.e., a single temporal DOF), it is not truly a STAP 

algorithm in the strict sense of this term. However, it is a spatially-adaptive algorithm that 

can provide substantial performance gains with moderate throughput requirements. Analysis 

results obtained through simulation and by processing data sets measured by the MCARM 

array and other sensor platforms indicate that the first-order Doppler-factored STAP 

algorithm that uses training sets of non-overlapping blocks of contiguous range samples is 

effective at nulling Doppler-spread clutter (Suresh Babu and Torres, 1995). 

The architecture of the first-order Doppler-factored STAP algorithm corresponds to the 

processing of a single Doppler bin in the higher-order Doppler-factored architecture shown in 
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Figure 3-2. The computation counts for the medium benchmark case are readily obtained 

from the expressions given in Section 3.2 with the number of sensors, L, set to 16 and the 

processing order, Q, set to 1 (i.e., single temporal DOF). 

3.5  Easy Benchmark Case: Post-Doppler Adaptive DPCA 

The post-Doppler adaptive DPCA algorithm was one of the first techniques developed to 

address the issue of Doppler-spread clutter in airborne radar (Skolnik, 1990, pp. 16.8-16.14). 

It employs simultaneous spatial and temporal filtering, as shown in Figure 3-3, to suppress 

the sidelobe clutter competing with the target. The basic concept is to adjust the radar PRI 

such that the motion of the aircraft platform causes channel (i.e., phase center) 0 to move 

exactly into the spatial position of channel 1 after a single PRI (i.e., pulse). Consequently, 

the clutter signals at pulse p of channel 0 and pulse p -1 of channel 1 now appear to result 

from stationary ground scatterers and can be canceled using a simple two-pulse MTI filter. 

The processing differs from first-order Doppler-factored STAP only in that an additional time 

delay is included in channel one. This added time delay changes the Doppler processing 

implemented in the two channels so that the K complex data samples after Doppler 

processing are: 

x5{0,k,r) = %d(P)x4(0,p,r)ej^'K)pk (3-18) 
p=0 

and 
p-i 

x5(l,k,r) = ^d(p)x4{l,p + l,r)ej^IK)pk, (3-19) 
p=0 

for r = 0,..., ND -1 and k = 0,.. .,K -1. In other words, channel 0 performs Doppler 

processing on pulses 0 through P-\, while channel 1 processes pulses 1 through P. Note 

that channel 1 now requires that pulse P be preprocessed in lieu of pulse 0. The computation 

counts for the easy benchmark case are readily obtained from the expressions derived in 

Section 3.2 by using two channels (i.e., L = 2) and a processing order of one (i.e., 0 = 1). 
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Figure 3-3. Post-Doppler Adaptive DPCA 

3.6 Summary 

In this section, we provided a functional specification for the three post-Doppler adaptive 

algorithms that form the hard, medium, and easy RT_STAP benchmark cases. These 
algorithms include the third-order Doppler-factored STAP algorithm for the hard case, the 
first-order Doppler-factored STAP algorithm for the medium case, and the post-Doppler 
adaptive DPCA algorithm for the easy case. Both the first-order Doppler-factored STAP 
algorithm and the post-Doppler adaptive DPCA algorithms implement a subset of the 

processing required by the higher-order Doppler-factored STAP algorithm resulting in a 

significant reduction in computational complexity. This reduction in complexity is largely 

obtained by reducing the size of the QR-decompositions required to compute the adaptive 
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weights. This section also evaluated the computational complexity of these methods. The 

results of this analysis are summarized in Table 3-1 for the higher-order Doppler-factored 

STAP algorithm. The computation counts for the hard, medium, and easy benchmark cases 
can be obtained by using (L = 22, g = 3),(L = 16, ß = l), and(L = 2, ß = l), respectively. 

Table 3-1. Higher-Order Doppler-Factored STAP Computation Counts 

Function Operation Count 

Doppler Processing L-ND -(5-K-log2K + 2-P) 

Weights Computation K-M(S-[L-Qf-{NR+l)) 

Weights Application K-M-(S-L-Q-NR) 

Definitions of the variables used in Table 3-1 are given below: 

L: Number of channels 

P: Number of pulses per Doppler processing block 

ND: Number of samples per pulse after decimation 

K: Doppler FFT size (power of 2) 

M: Number of independent non-overlapping blocks ND / NR of contiguous 

range samples used to calculate the adaptive weights 

NK: Number of contiguous range cells per weight computation 

Q: Processing order. 
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Section 4 

MCARM Implementation 

This section describes the timing specification and scalability study to be implemented 

as part of the RT_STAP benchmark. The parameters used to define both the timing 

specification and scalability study are based upon the MCARM data collection system. In 

Section 4.1 we briefly describe aspects of MCARM that are critical to the RT_STAP 

benchmark. Section 4.2 describes the timing specification and Section 4.3 outlines the 

scalability study. 

4.1 MCARM Example 

The MCARM (Multi-Channel Airborne Radar Measurements) system was developed in 

the early 1990s by Westinghouse for Rome Laboratory. The system is comprised of a 32 

element antenna, transmitters, and receivers capable of generating L-band (1.3 GHz) radar 

measurements. The 32 antenna outputs are combined to form 22 channels. MCARM 

transmits a linear FM signal with a pulse repetition rate ranging between 250 and 2000 kHz 

and pulsewidth of 50 or 100 microseconds. The system also contains a recording system that 

enables the operator to record up to a 100 millisecond CPI data block from all 22 channels, at 

a rate of 5 MHz. The data recording system can store a single CPI every 2 seconds. The 

system is mounted on a BAC 1-11 aircraft and can be used to collect airborne radar data 

suitable for evaluating the performance of STAP algorithms. A number of data collection 

experiments have been conducted in the Chesapeake Bay area and several data sets have been 

made available by Rome Laboratory (see http: //sunrise, oc.rl.af.mil). 

Table 4-1 summarizes the parameter values used to determine timing requirements and 

evaluate the throughput for both the preprocessor and STAP algorithm when applied to the 

MCARM example. Note that the MCARM array provides IF data consisting of real integer 

A/D samples generated with a sampling rate of 5 MHz. After conversion to baseband, the 

I/Q is decimated by a factor of four to reduce the sample rate to 1.25 MHz. 
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Table 4-1. Parameter Values for the Three Benchmark Cases 

Parameter Value 

Number of channels to be processed (L) see Note 1 

Number of pulses per Doppler processing block (P) 64 

Number of channels in binary file containing input data cube 22 

Number of PRIs in binary file containing input data cube 65 

Number of samples per pulse before decimation (JV) 1920 

Decimation factor (D) 4 

Number of samples per pulse after decimation (JVD) 480 

FIR filter length used in video-to-I/Q conversion (Ka) 36 

FIR filter length used in array calibration (Kc) 3 

FIR filter length used in pulse compression (Kp) 63 

Convolution length used to implement calibration and pulse compression (R) 192 

FFT size used by the overlap-save method (R) 256 

Number of blocks used to implement the overlap-save method (B) 3 

Doppler FFT size (K) 64 

Number of independent non-overlapping range blocks (M) see Note 2 

Number of range cells per weight computation (JVR) see Note 3 

Processing Order (Q) see Note 4 

Note 1: L for the hard, medium, and easy benchmark cases is 22,16, and 2, respectively. 
Note 2: M for the hard, medium, and easy benchmark cases is 2, 6, and 6, respectively. 
Note 3: NR for the hard, medium, and easy benchmark cases is 240, 80, and 80, respectively. 

Note 4: Q for the hard, medium, and easy benchmark cases is 3,1, and 1, respectively. 
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For the evaluation of the hard, medium, and easy benchmark cases, we used 22, 16, and 2 

of the 22 available MCARM data collection channels, respectively. For all three cases, the 

CPI consisted of 64 contiguous pulses. These parameters were selected to obtain the 

operation rates that met the requirements of the benchmark cases. The high performance 

computer must input 0.49, 3.93, and 5.41 Mbytes of short integer data per CPI for the easy, 

medium, and hard benchmark cases, respectively. 

4.2  Timing Specification 

A key element of any real-time benchmark is the specification of the period and latency 

required by the application. The period is defined to be the time between input data sets 

while latency is the time required to process a single data set. The latency corresponds to the 

time from when the first data leaves the data source to the time the final result is output to the 

data sink. The strictness of the latency requirement determines the difficulty, and in some 

cases even the feasibility, of the parallel implementation. 

For RT_STAP both the period and latency are closely associated with the CPI of the radar 

system. We assume data is measured continuously and must be processed independently 

from one CPI to another. As a result, the period corresponds to a single CPI. For the 

MCARM example used in Section 4.1, the period equals 32.25 milliseconds corresponding to 

a CPI with 64 pulses. 

We define two latency cases for the RT_STAP benchmark: short and unlimited. For the 

unlimited latency case, we make no restrictions on the length of time required to complete the 

processing of the data cube associated with a single CPI. The implementor is encouraged to 

minimize processor size without regard to latency. This result provides a lower bound on the 

size of the processor required to meet the period requirement of the benchmark. The short 

latency case requires that the processor input the CPI data cube from the source, process the 

data cube, and output the results to the data sink within 5 CPIs. This corresponds to a latency 

of 161.25 milliseconds for the MCARM example. One of the considerations in this choice is 

to force a parallel implementation of the QR-decomposition for the hard benchmark case. 
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4.3 Scalability Study 

Conventional benchmarking approaches evaluate scalability by varying the size of the 

processing problem (typically the amount of data to be processed) while holding the period 

and latency fixed. Although the amount of data increases as we increase the difficulty of the 

benchmark, RT_STAP evaluates the scalability of the architecture based largely upon 

increasing algorithm complexity for a fixed period and latency. The subsequent discussion 

evaluates the operation rate required to implement both the preprocessing described in 

Section 2 and the post-Doppler adaptive algorithms described in Section 3 for the MCARM 

data collection system. The results described in this section correspond to three data points 

of the scalability study associated with the easy (DPCA), medium (first-order Doppler- 

factored STAP), and hard (third-order Doppler-factored STAP) benchmark cases. 

Table 4-2 gives the computational throughput requirements for both the preprocessing 

described in Section 2 and the post-Doppler adaptive algorithms described in Section 3 based 

upon the MCARM parameters described in Table 4-1. The operation rates are specified in 

billions of floating-point operations per second (Gflop/s) and are computed by dividing the 

operation counts given in Sections 2 and 3 by the period. For this scenario, the period is 

equivalent to the duration of the CPI and is 32.25 milliseconds. 

For the easy, medium, and hard benchmark cases, the preprocessing and the post-Doppler 

STAP algorithms require a total operation rate of 0.60, 6.46, and 39.81 Gflop/s, respectively. 

For the easy case, preprocessing dominates the computation complexity, accounting for over 

82 percent of the processing operation rate. For the medium benchmark case, first-order 

Doppler-factored STAP accounts for slightly less than 40 percent of the processing required 

for the 16 channel data cube (i.e., 2.59 Gflop/s for the STAP algorithm versus 3.87 Gflop/s 

for the preprocessing). For the hard benchmark case, the computational complexity of the 

STAP algorithm significantly increases and accounts for nearly 87 percent of the processing 

required for the 22 channel data cube (i.e., 34.50 Gflop/s for the STAP algorithm versus 

5.31 Gflop/s for the preprocessing). Table 4-3 lists the number and size of the QR- 

decompositions required to compute the adaptive weights for each benchmark case. 
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Table 4-2. Operation Rates for the Three Benchmark Cases 

Function 

Operation Rate 

(Gflop/s) 

DPCA 

First-Order 
Doppler- 

Factored STAP 

Third-Order 
Doppler- 

Factored STAP 

Video-to-I/Q Conversion 0.22 1.77 2.43 

Calibration and Pulse Compression 0.26 2.10 2.88 

Preprocessing Total 0.49 3.87 5.31 

Doppler Processing 0.06 0.49 0.67 

Weights Computation 0.03 1.98 33.33 

Weights Application 0.02 0.12 0.50 

Adaptive Processing Total 0.11 2.59 34.50 

Total 0.60 6.46 39.81 

Table 4-3. Number and Size of QR-Decompositions for the Three Benchmark Cases 

Benchmark #ofQRs Matrix Size 

Easy 384 80x2 

Medium 384 80x16 

Hard 128 240 x 66 
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Section 5 

Sequential Software Implementation 

A sequential software implementation of the functional specification was developed for 

the preprocessing and three post-Doppler adaptive algorithms that make up the easy, 

medium, and hard benchmarks described in Sections 2 and 3. This implementation consists 

of 1600 lines of sequential C source code designed to run on both Sun and Silicon Graphics 

workstations under the UNIX-based Solaris 2.3 (SunOS 5.3) and IRIX 5.3 operating systems, 

respectively. The software is intended to support validation of parallel implementations of 

the functional specification described in this report and may be used as a starting point for a 

parallel implementation of the STAP algorithm. The code is not intended to provide an 

efficient parallel implementation for any particular high performance computing system. 

Figure 5-1 illustrates the sequential processing of a single real input data cube. The 

software decomposes into a series of processing functions and corner-turns. Each cube 

shown in Figure 5-1 depicts the ordering of the data with the rows of a face corresponding to 

the fastest changing variable, columns are indexed second and each face indexed at the 

slowest rate. For example, in the first data cube shown in Figure 5-1, time is the fastest 

running variable, PRI (i.e., pulse) is second, and channel is third. Each arrow in the figure 

corresponds to a function applied to the data. These functions correspond to either a data 

processing step or corner-turn. The software is structured so that each process is explicitly 

implemented by a particular code segment. 

At various points in the functional specification, selection of a particular algorithm for 

implementing key components of the preprocessing and STAP algorithms was left to the 

software developer. In particular, selection of FFT algorithms and methods for implementing 

the QR-decomposition were left open. In the development of the sequential software, all 

FFTs were implemented using the algorithm defined in (Press, et dl., 1988, pp. 411-412) and 

the modified Gram-Schmidt QR-decomposition technique described in (Golub and Van 

Loan, 1989, pp. 218-219) was used to compute the adaptive weights. 
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Figure 5-1. Sequential Software Implementation 

The software has been used to process a limited number of MC ARM data cubes. With 

some restrictions, the C source code, calibration coefficients, spatial steering vector, FIR 

lowpass filter coefficients, test input data cube, and post-Doppler adaptive processing 

results can be obtained directly from Ron Williams whose electronic mail address is 

ronw@mitre.org. The results obtained by applying the sequential software implementing 

non-adaptive beamforming processing and first-order Doppler-factored STAP to this data 

cube are shown in Figures 5-2 and 5-3, respectively, and are described below. It should be 

noted that the test input data cube is a subset of an original MCARM data cube, where the 

first 600 time samples for each PRI of each channel have been eliminated since they contain 

the recorded transmitted pulse. 
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Figure 5.2 Range-Doppler Map Following Non-Adaptive Beamforming Processing 
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First-Order Doppler-Factored STAP 
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Figure 5.3 Range-Doppler Map Following First-Order Doppler-Factored STAP 
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5.1 Building the Software 

The software is delivered on an 8 mm tape that contains both the source code and 

Makefile used to create the executable code. The code can be removed from the tape by 

typing tar -xvf <device> at the prompt, where <device> corresponds to the tape drive 

being used to extract the data (e.g., /dev/rstO). The directory MITRE-RT_STAP will be 

created that contains the source code and data files necessary to run the sequential code. 

The source code is compiled by first moving to the directory MITRE-RT_STAP and 

successively typing the commands make clean, make depend and make at the prompt. It 

is assumed that an ANSI C compiler is available and that the PATH environment variable is 

properly set to provide access to this compiler. For example, in our system architecture we 

used the gcc compiler, version 2.7.2, with the -ansi and -pedantic compiler switches. 

A compile-time switch within the Makefile also provides a choice between a single or 

double-precision version of the sequential software. The user can simply choose between 

either PRECISION=DOUBLE or PRECISIONS INGLE in the Makefile. 

5.2 Running the Software 

The software is run by typing RT_STAP PARAMETERS at the prompt. The ASCII 

input parameters file (PARAMETERS) and the remaining three ASCII data files 

(IQ_f ilt. dat,   calib_f ilt. dat, and steering_vec. dat) required by the 

software are provided on the tape. The contents of these files, along with descriptions of 

the other input parameters, are provided in Table 5-1. The real input test data cube is 

contained in the short integer binary file input_cube. bin. The post-Doppler adaptive 

processing range-Doppler complex outputs calculated using the double-precision version of 

the sequential software are also provided on the tape. Specifically, the double-precision 

complex binary files output_hard. bin. VAL, output_medium. bin. VAL, and 

output_easy. bin. VAL correspond to third-order Doppler-factored STAP, first-order 

Doppler-factored STAP, and post-Doppler adaptive DPCA, respectively. The non-adaptive 

beamform processing range-Doppler outputs, calculated by using a processing order 
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Table 5-1. Sequential Software Input Parameters in File PARAMETERS 

Name Description Value 

iL Number of channels to be processed see Note 1 

iLFile Number of channels in file containing input data cube 22 

iLFileOffset First channel in data file to be processed see Note 2 

iP Number of pulses per Doppler processing block 64 

iPFile Number of PRIs in file containing input data cube 132 

iPFileOffset First PRI in data file to be processed 0 

iN Number of samples per pulse at A/D rate before decimation 1920 

dfO Ratio of center frequency to A/D sampling rate 0.25 

iMl FIR filter length used in video-to-I/Q conversion 36 

dBs Bandwidth of transmitted linear FM signal 1.0E06 

iD Sampling rate decimation factor 4 

dfAD A/D sampling rate 5.0E06 

iM2 FIR filter length used in array calibration 3 

dTau Uncompressed pulsewidth of transmitted linear FM signal 50.4E-06 

iR_fftlen FFT size used by overlap-save fast convolution 256 

iWinDoppler Type of window taper used in Doppler processing 
(l=rectangular, 2=Hanning, 3=Hamming, 4=Blackman) 4 

iWinPCF Type of window taper used in pulse compression 
(l=rectangular, 2=Hanning, 3=Hamming, 4=Blackman) 4 

FIR_file 
Name of ASCII input file containing FIR filter 

coefficients used in video-to-I/Q conversion IQ_filt.dat 

ChanBalFile Name of ASCII input file containing FIR filter 
coefficients used in array calibration calib_filt.dat 

InputDataFile Name of binary file containing input data cube input_cube.bin 

Note 1: iL for the hard, medium, and easy benchmark cases is 22, 16, and 2, respectively. 

Note 2: iLFileOf fset for the hard, medium, and easy benchmark cases is 0, 2, and 2, 
respectively. 
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Table 5-1. Sequential Software Input Parameters in File PARAMETERS (Concluded) 

Name Description Value 

I_Adapt 
Type of post-Doppler processing 

(O=non-adaptive, 1=DPCA, 2=STAP) see Note 3 

iQ Post-Doppler processing order see Note 4 

iDeltaR Number of range cells used to compute adaptive weights see Note 5 

iRmin Minimum range index to be post-Doppler processed 0 

iRmax Maximum range index to be post-Doppler processed 479 

SteerVectorFile 
Name of ASCII input file containing spatial 

steering vector steering_vec.dat 

FinalDataFile 
Name of binary file containing output range-Doppler 

data matrix see Note 6 

ValDataFile 
Name of binary file containing double-precision output 

range-Doppler data matrix used for validation see Note 7 

Note 3: I_Adapt for the hard, medium, and easy benchmark cases is 2, 2, and 1, respectively. 

Note 4: iQ for the hard, medium, and easy benchmark cases is 3, 1, and 1, respectively. 

Note 5: iDeltaR for the hard, medium, and easy benchmark cases is 240, 80, and 80, respectively. 

Note 6: FinalDataFile for the hard, medium, and easy benchmark cases is ouput_hard. bin, 
output_medium.bin, andoutput_easy.bin, respectively. 

Note 7: ValDataFile for the hard, medium, and easy benchmark cases is ouput_hard. bin. VAL, 
output_mediiom.bin.VAL, and output_easy.bin.VAL, respectively. 

of one and setting the weights equal to the normalized space-time steering vector are also 

provided in the double-precision complex binary file output_nonadapt. bin. VAL. The 

corresponding range-Doppler maps for non-adaptive beamform processing and first-order 

Doppler-factored STAP are shown in Figures 5-2 and 5-3, respectively. 

The program generates timing measurements for the sequential software and sends them 

to standard output. Wall clock time for several major functional blocks are generated, 

including: disk I/O, preprocessor, corner turns, Doppler processing, the STAP algorithm, 

various miscellaneous functions, and finally a total processing time. The timing facility used 

in the sequential software is the BSD compatible gettimeof day () function. 
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Section 6 

Implementation and Reporting Guidelines 

This section provides a set of implementation and reporting guidelines for distributed 

memory multicomputers—the initial intended target of the RT_STAP benchmark. The target 

multicomputers contain processing nodes with one or more general-purpose microprocessors 

or digital signal processing chips that support floating-point operations. These guidelines 

require the use of the "test bench" configuration described in (Brown, et al, 1995) and 

(Games, 1996) to measure real-time performance of the benchmark implementation under 

steady-state conditions. The test bench requires data sources and data sinks that are 

dedicated to providing inputs to the function under test and storing results. These sources 

and sinks may be located on the machine under test so that an actual I/O interface need not be 

implemented. In (Games, 1996), a set of general guidelines for implementing compact 

applications that are based upon the use of the test bench has been reported. We have 

adapted these guidelines to the RT_STAP benchmark. 

The RT_STAP benchmark guidelines require that: 

1. The input data cube must be stored originally on a source node(s) in memory that is not 

directly associated with the processors that implement the RT_STAP preprocessing or 

STAP functions. The data cube has dimensions of channels, pulses, and time. Data 

must be stored in a single contiguous set of memory locations with time samples 

grouped first as a function of pulses and then channels. If the data block is too large to 

be stored in a single source node, then it should be partitioned by channels. 

2. When establishing timing performance the same data cube can be repeatedly input to 

the processors that implement the RT_STAP function (to avoid the need for disk I/O). 

3. The results must be output to a sink node(s) and stored in memory not directly 

associated with the processors that implement the RT_STAP preprocessing or STAP 

functions. The output range-Doppler data matrix must be stored in a single contiguous 
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set of memory locations with the range samples grouped as a function of the Doppler 

frequency, or vice versa. 

4. The source and sink nodes may be implemented on the same or different processing 

nodes. 

5. The processing latency for a problem instance is measured as follows. A time stamp ts 

is calculated at the data source right before the first input data for this instance is sent 

from the source node. A second time stamp tc is calculated at the data sink right after 

the final corresponding results are received by the sink node. The processing latency 

for this problem instance is then tc - ts. This requires a synchronized global clock if the 

source and sink are on physically separated nodes. Period measurements are calculated 

as the difference of successive values of tc corresponding to successive problem 

instances. Latency and period measurements can be calculated off-line from the time 

stamp data. Care must be taken that data collection does not cause any unintended disk 

I/O to occur during a run. 

6. In the case that the input data cube and output range-Doppler data matrix do not fit in 

the memory of a single node, then multiple source and sink nodes are necessary. The 

time stamp ts of a problem instance should occur before any data is sent from the 

multiple sources. The processing of that instant is considered completed when all sink 

nodes have received all their results. 

7. A benchmark run to establish valid timing performance should run continuously for at 

least 15 minutes to account for any operating system dropout problems. 

8. The following information and statistics should be calculated during a post processing 

stage for a single benchmark run: 

a.   Histogram of period measurements. Maximum, average, and minimum period. 

The benchmark is considered valid only if the maximum period observed is less 

than or equal to the period specification. This must be repeatable. 
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b. Histogram of latency measurements. Maximum, average, and minimum latency. 

The benchmark is considered valid only if the maximum latency observed is less 

than or equal to the latency specification. This must be repeatable. 

c. Some small number of initial problem instances can be ignored to eliminate start-up 

anomalies, if present. If this is done then the number of ignored instances should 

be stated. 

9. For each latency case and for each feasible problem size, the smallest machine that 

produces a valid benchmark result should be determined. Machine size is measured in 

terms of the number of processing nodes used, not including processing nodes used to 

implement the source and sink. The only exception to this rule is that any "excess" 

source and sink nodes beyond the minimum number that are required to store one copy 

of the input data cube and output matrix should also be counted in the machine size. 

Standard commercial-off-the-shelf hardware and system software configurations should 

be used. If a machine supports multiple configurations (for example, different amounts 

of memory at the processing nodes), then these different configurations must be 

itemized and benchmarked separately. 

10. The maximum period for a benchmark run is used to report the sustained Gflop/s 

operation rate of the implementation. The operation rate is defined to be the total 

floating-point operation count determined using the results presented in Section 2 for 

the preprocessing and Section 3 for the STAP algorithm divided by the maximum 

period measurement. Alternatively, this number can be obtained by multiplying the 

operation rate from Table 4-2 by the required period and dividing by the maximum 

period measured. This value should be divided by the theoretical peak processing rate 

of the size machine used in the processing to determine the processing utilization 

percentage. 

11. The following scalability information should be generated for each latency case: 
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a. Minimum machine size as a function of the benchmark case (easy, medium, hard). 

b. Processing utilization percentage as a function of the benchmark case (easy, 

medium, hard). 

12.   Validation criterion: It would be desirable to define an application-specific validation 

criterion associated with STAP system performance (e.g., detectability of a weak 

target), and to let basic issues such as number representation be determined by the 

implementor. Such a point-of-view is beyond the scope of this initial effort. Instead 

the expectation is that the RT_STAP benchmark will be implemented initially in 32-bit 

single-precision floating point, and the validation criterion was chosen to reflect this 

fact. We do not preclude the use of alternative number representations (e.g., fixed-point 

accelerators to implement the preprocessing), but the validation criterion may need to 

be adjusted in this case. 

Differences between the results of the parallel and sequential implementations should 

be due to rounding error and, as a result, they should be relatively small. The validation 

process compares the range-Doppler results generated by the single-precision parallel 

software implementation with the double-precision results generated using the 

sequential software. All calculations performed as part of the validation process should 
be calculated using double-precision values. Let z(k,r) be the processed radar return 

associated with Doppler bin k and range cell r generated using the double-precision 
version of the sequential software, and let z(k,r) be the radar return computed using a 

single-precision parallel software implementation. The validation criterion requires that 

the peak change in power values (measured in dB) be less than 1 dB for power values 

(single or double-precision) greater than a specified threshold (i.e., 10 dB below the 
estimated noise floor PN). Specifically, the validation criterion is given by: 

max 
k,r 

101og10|z(*,r)|2-101og10|z(fc,r)f <  1, 
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where the maximum is over all values k and r such that 101og10 [z(fc,r)| > (PN -10) or 

101og]0 \z(k, r)\ > (PN -10). Note that this validation criterion has an equivalent 

representation using a definition of relative error: 

max 101og10 

\z(k,rf-\z(k,r)( 

\z(k,rf 
< -6.9. 

The noise floor is estimated over a region in the range-Doppler map that is removed 
from the mainlobe clutter. For this benchmarking effort, PN is estimated as 

10 log 10 

0.5AT-1 Wo"1 ^ 

I     I  KM2 
L0.2A^DJ-L0.2Ü:J     4=1-0.3^-1    r=|"o.8JVDl 

The post-Doppler adaptive processing range-Doppler results z{k,r) calculated using the 

double-precision version of the sequential software are provided on the tape, as 

discussed previously. 
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Section 7 

Conclusion 

This report provides a specification of the RT_STAP benchmark for evaluating the 

application of high performance computers to the real-time implementation of space-time 

adaptive processing techniques on embedded platforms. The scalability study outlined in the 

RT_STAP benchmark varies the sophistication and computational complexity of algorithms 

to be implemented along with the size of the data processing problem. This report provided 

functional specifications for three post-Doppler adaptive algorithms corresponding to the 

easy, medium, and hard cases of the benchmark. These algorithms include: DPCA, first- 

order Doppler-factored STAP, and third-order Doppler-factored STAP algorithms. These 

algorithms were selected due to the range of performance and computational complexity they 

provide. 

Preprocessing that is typically applied to the data samples collected by an antenna array 

used in airborne surveillance applications was described in Section 2. The preprocessing 

implements several critical functions including video-to-I/Q conversion, array calibration, 

and pulse compression. These standard signal processing functions can represent a 

significant component of the processing chain required for implementing post-Doppler 

adaptive processing. Although usually implemented with special-purpose hardware, we view 

preprocessing as a potential application of HPC technology. By using HPC technology to 

implement preprocessing, the number of hardware interfaces required to implement an MTI 

radar can be reduced thus minimizing the complexity of the system and simplifying future 

algorithm upgrades. 

A key component of the RT_STAP benchmark is the specification of the period and 

latency requirements. For this benchmark we used the CPI of the MC ARM data collection 

system to specify the period and latency. The period corresponds to the duration of a single 

CPI and is equal to 32.25 milliseconds. In the benchmark we specified two latency cases: 

long and short. The long latency case makes no restriction on the latency of the 

implementation and provides a lower bound on processor size required to meet the 
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throughput requirement determined by the period. The short latency case requires a solution 

to be computed in less than 161.25 milliseconds corresponding to 5 CPIs of the MCARM 

data collections system. 

In this report, an analysis of the computational throughput of both the preprocessing and 

the STAP algorithms was conducted for the MCARM data collection system. We found that 

the operation rate required to implement the three benchmark cases including both 

preprocessing and adaptive processing was: 0.60 Gflop/s for the easy case (DPCA), 6.46 

Gflop/s for medium benchmark case (first-order Doppler-factored STAP), and 39.81 Gflop/s 

for the hard case (third-order Doppler-factored STAP). The DPCA algorithm can be easily 

implemented using current HPC technology. While implementation of the medium 

benchmark is not trivial, it can likely be achieved on a large number of HPC platforms. The 

third-order Doppler-factored STAP algorithm, while representing a likely migration path for 

future STAP-based MTI radars, presents a challenging benchmark for most HPC systems. 

As our analysis shows, the QR-decomposition used to compute the adaptive weights is 

the key contributor to the computational complexity of the three algorithms. Variations in 

computational complexity are largely due to the number and size of the QR-decompositions 

used to implement the weight computation process for each algorithm. For the short latency 

requirement, it is expected that the easy and medium benchmark cases will not require the 

parallel implementation of the QR-decomposition. However, the short latency requirement is 

expected to force a parallel implementation for the hard benchmark case, thus significantly 

increasing the complexity of implementing this algorithm. The performance of a single 

processor implementation of the QR-decomposition is a key enabler for efficient STAP 

implementations. The single-processor QR-decomposition timings for matrix sizes 

representative of real STAP applications should be tracked as technology improves and is the 

focus of the single-processor QR-decomposition benchmark introduced in Appendix B. 

Finally, in Sections 5 and 6 of this report we describe a sequential implementation of the 

three algorithms and implementation and reporting guidelines for the RT_STAP benchmark. 

The sequential C code can be used to validate parallel implementations of the benchmark. 
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Appendix A 

Filter Coefficients and Taper Weights 

In this appendix, we describe the FIR lowpass filter coefficients, the pulse compression 

coefficients, and the weight tapers used in the application of the preprocessing and Doppler 

processing described in Sections 2 and 3 of this report for the MCARM data collection 

system. The following table contains the first 18 real-valued coefficients of the 36-tap FIR 

lowpass filter used to implement the I/Q conversion process. The final 18 coefficients obey 
the property: hz{2>5-n) = ha{n), forn = 0,...,17. 

Table A-l. FIR Lowpass Filter Coefficients 

Tap Index Coefficient 

0 -1.6102325379139743e-03 

1 -2.8646698676534879e-03 

2 -3.0617070475842689e-03 

3 -2.9357617638042620e-04 

4 6.1262081463881951e-03 

5 1.4294106583588592e-02 

6 1.9275452700646348e-02 

7 1.4737539657310698e-02 

8 -3.3578280531961473e-03 

9 -3.2523070782627228e-02 

10 -6.1449167561121960e-02 

11 -7.1877204855503404e-02 

12 -4.5053503730479859e-02 

13 2.9350592632137750e-02 

14 1.4589099239674899e-01 

15 2.8167135508217145e-01 

16 4.022017599594001le-01 

17 4.7313563326838914e-01 
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An expression for the FM signal that forms the matched filter weights used to implement 

pulse compression is given by: 

s(k) = cxp- -m 
( u\ 

fs u v-/sy 
rect 

f  k  ^ 

\fsTuJ 

In the above expression, Bs represents the bandwidth of the transmitted signal and is equal to 

1 MHz for the MCARM antenna. The symbol Tu corresponds to the uncompressed 

pulsewidth of the signal and has a value of 50.4 microseconds. Finally, fs represents the 

sampling rate after decimation and has a value of 1.25 MHz. These weights are computed 

off-line and combined with the taper weights to form the coefficients of the pulse 

compression filter. For this example, a Blackman taper is used. The coefficients of this taper 

are 

w(k) = 0.42 -0.5cos(2nfc / (Kp -1)) + 0.08cos(4nfc/ (Kp -1)), 

for k = 0,1,..., #p -1, where Kp corresponds to the length of the pulse compression filter and 

equals [7STU"|. 

A Blackman taper is also used to implement the Doppler processing. In this example, the 

taper has the form 

d{p) = 0.42 - 0.5cos(2nfc / (P -1)) + 0.08 cos(4flfc / (P -1)), 

for p = 0,1,...,P-1, where P corresponds to the number of pulses used in the Doppler 
processing block. 
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Appendix B 

Single-Processor QR-Decomposition Benchmark 

The QR-decomposition is a critical component of space-time adaptive processing 

(STAP). The number and size of the QR-decompositions required by a particular STAP 

algorithm largely determines the algorithm's computational complexity. When designing a 

parallel implementation for a real-time STAP application, a key point is whether the 

application's latency requirement forces a parallel implementation of the QR-decomposition, 

or whether the often multiple QR-decompositions can be accommodated across single nodes. 

A parallel implementation of the QR-decomposition implies an increase in the complexity of 

the parallel software and usually results in significantly reduced processing efficiency. 

This single-processor QR-decomposition benchmark provides useful information that 

bears on this parallelization issue for matrices of practical sizes found in current and near- 

term STAP applications. The subsequent discussion provides a brief description of the QR- 

decomposition along with simple guidelines for implementing the algorithm in software. This 

discussion is followed by an outline of the reporting guidelines for the single-processor QR- 

decomposition benchmark. 

Let Y correspond to an m x n matrix (m rows and n columns) of complex values, where 

m>n and Y has full column rank. The QR-decomposition of this matrix is: 

Y=QR, 

where R is an m x n upper triangular matrix and Q is an m x m unitary matrix. The matrix 

R can be written as \R?    Öl , where R} isanxn full rank upper triangular matrix. The 

QR-decomposition can be computed using a number of techniques including those based 

upon Householder and Givens transformations, along with the modified Gram-Schmidt 

approach1. These algorithms tradeoff computational complexity, storage requirements, and 

1    Golub, G. H. and C. F. Van Loan, 1989, Matrix Computations, 2nd Edition, Baltimore, 
MD: The Johns Hopkins University Press, pp. 211-219. 
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other factors that impact the implementation and performance of the algorithm on high 

performance computers. For this benchmark, the user is allowed to select a particular 

algorithm for implementing the QR-decomposition. However, the algorithm selected must 

be suitable for decomposing complex matrices, and it must explicitly compute and store the 

upper triangular matrix /?,, but not necessarily store the unitary matrix Q. 

As part of the RT_STAP sequential software package, we provide 12 single-precision 

complex data matrices, Y, that can be used as inputs for evaluating the computational 

complexity of a given implementation of the QR-decomposition. The sizes of these data 

matrices and the names of the files in which they are stored are given in Table B-l in two 

groups of the form In x n and 4nxn. Note that the condition number2 of YHY increases 

with n to provide an increasingly stressful test of the accuracy of the implementation. 

Standard single-precision floating-point precision should be sufficient in all cases. For these 

data files the matrix row index is chosen as the slowest running parameter. That is, for the 

64 x 16 matrix the first 16 values correspond to the first row of the matrix, the second 16 

correspond to the second row and so on for 64 rows. 

The single-processor QR-decomposition benchmark is concerned with the processing 

time of software intended to run on a single processing node of a high performance computer. 

Usually this will correspond to a single microprocessor; however, some architectures contain 

processing nodes with multiple processors sharing memory. Such configurations are allowed, 

but the results should be reported when the code runs both on a single microprocessor and the 

full node. In all cases, the matrix should be initially stored in shared memory accessible to 

the network interface. It can be stored in either column or row major order. 

To determine the processing time for each QR benchmark case, a time stamp ts is 

calculated just before the QR-decomposition routine is called. A second time stamp tc is 

calculated right after the corresponding final result is returned from this same function. The 

processing time for this problem instance is then tc - ts. Wall clock time should be used. 

2    Golub, G. H. and C. F. Van Loan, 1989, Matrix Computations, 2nd Edition, Baltimore, 
MD: The Johns Hopkins University Press, pp. 79-81. 
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Table B-l. QR Benchmark Data Matrices and Weight Vectors 

Size of Data 

Matrix Y 

Data Matrix 

File Name 

Condition (dB) 

of Matrix YHY 

Weight Vector 

File Name 

32x16 Y32xl6.dat 75 W32xl6.dat 

64x32 Y64x32.dat 80 W64x32.dat 

96x48 Y96x48.dat 85 W96x48.dat 

128x64 Yl28x64.dat 90 Wl28x64.dat 

160x80 Yl60x80.dat 95 Wl60x80.dat 

192x96 Yl92x96.dat 100 Wl92x96.dat 

64x16 Y64xl6.dat 75 W64xl6.dat 

128x32 Yl28x32.dat 80 Wl28x32.dat 

192x48 Yl92x48.dat 85 Wl92x48.dat 

256x64 Y256x64.dat 90 W256x64.dat 

320x80 Y320x80.dat 95 W32 0x80.dat 

384x96 Y3 84x96.dat 100 W384x96.dat 

Each benchmark case consists of running 1000 trials. The average times should be reported 

for the 12 matrices provided as part of the RT_STAP benchmark software. 

To verify that the QR-decomposition was computed correctly the software should solve 
the system of linear equations flf k\ w =u for the weight vector w, where ü is a n x 1 vector 

whose entries are all one. The software should compare the elements of the weight vector 

computed by the QR-decomposition process with those generated by the LINPACK 
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software3. If we let w(i) represent an element of the double-precision weight vector 

computed using the double-precision version of the LINPACK QR-decomposition, and let 

w(i) represent the same element computed using the software being benchmarked, then the 

following relative error criterion must be met to validate the software: 

max 10 log 10 

'w(z') - w(i)\ 

HOI2 10. 

Table B-l provides the names of the files containing the double-precision weight vectors 

computed using the double-precision version of the LINPACK software. All computations 

performed to validate the results must be done using double-precision values. 

Table B-2 provides a template for reporting the results. The operation rate in millions of 

floating-point operations per second (Mflop/s) is computed by dividing the number of 

floating-point operations required to implement the QR-decomposition by the average time 

value. The number of floating-point operations for the QR-decomposition of an m x n 

complex matrix should be taken uniformly as 8mn2. 

Dongarra, J. J., C. B. Moler, J. R. Bunch, G. W. Stewart, 1979, LINPACK User's Guide 
Philadelphia, PA: SIAM, pp. 9.1-9.25. 
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Table B-2. QR Benchmark Results Template 

QR-Decomposition Algorithm: 

Microprocessor Name: 

Peak Operation Rate (Mflop/s): 

Matrix Size 
Average Processing 

Time (msec) 
Operation Rate 

(Mflop/s) 

32x16 

64x32 

96x48 

128x64 

160x80 

192x96 

64x16 

128x32 

192x48 

256x64 

320x80 

384x96 

«U.S. GOVERNMENT PRINTING OFFICE:      1998-610-130-61134 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 
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